The philosophy of the ICRP system applied to radon and NORM

Challenges in applying the RP system in management of NORM and radon

EAN Webinar – Dec. 8, 2022

Jean-Francois Lecomte
C4 Emeritus Member

ICRP Publications 126 (Radon, 2014) and 142 (NORM, 2019)

PUBLICATION 142

Radiological Protection from Naturally Occurring Radioactive Material(NORM) in Industrial Processes

The ICRP System of Protection

Characteristics of the Rn & NORM exposures

- Natural radionuclides already existing and not used for their radioactive properties (Rn + NORM)
- No real prospect of emergency leading to tissue reaction or immediate danger of life (Rn + NORM)
- Ubiquity and variability of the exposures (Rn + NORM)
- Exposure can be anticipated but its level cannot without a characterisation (Rn + NORM)
- Internal exposure difficult to prevent (Rn + NORM)
- Lack of RP culture (Rn + NORM)
- Often multi-hazards and radiological risk rarely dominant (NORM)
- There are limited options for management of residues and waste (NORM)

Exposure Situations & Categories of exposures

 ICRP considers Radon and NORM exposures as existing Exposure Situations

- They can lead to:
 - Occupational exposure, but not for all workers
 - Public exposure
 - Environmental exposure (NORM only)
- An approach both integrated and graded is recommended

RP Principles

Justification

- Of the protection strategy
- After characterisation
- Priorities: Radon prone areas/buildings & National list (NORM)

Optimisation of the protection

- Driving principle (prevention & mitigation ALARA)
- Prevailing circumstances (options may be more limited)
- Use of reference levels (in concentration for Radon)

Application of the dose limits

- A priori not relevant
- May be applied for regulatory purpose

Integrated approach – Radon

- Management of radon exposure as far as possible at the level of the building whatever its occupants
 - Dwellings, workplaces, mixed-use buildings
 - In a public health perspective (WHO)
 - Unique reference level
- Straightforward and realistic approach
 - No distinction smokers / non-smokers
 - No specific requirement for children
- Combination with Indoor Air Quality and Energy saving policies
- Address health, economic, architectural and educational issues
- General ambition: address both the highest exposures and the global risk

Graded approach – Radon

- Selection of the **reference level**: between 100-300 Bq/m3
- National action plan: set **priorities**: radon prone areas/buildings
- Prevention and mitigation (existing and new buildings)
- Incentive or mandatory requisites, long-term strategy
- Graded approach for workers
 - At the level of the building with RL in concentration (Bq/m3)
 - At the level of workers with a RL of the order of 10 mSv/y
 - Occupational exposure:
 - In some activities and facilities (national list)
 - When the dose remain > RL
 - Other workers treated in the same way as mb of the public, with arrangements
- Recommendation to manage radon and other radiation separately (pragmatism)

Integrated approach – NORM

Workers:

 Starting with the protection strategy already in place or planned to manage other workplace hazards (hygiene & safety at work) and integrating, as necessary, specific radiological protective actions to complement

• Environment:

- All hazards: radiological and non-radiological stressors
- All impacts: human and ecological (non-human species)

Graded approach – NORM – Workers

- Select a relevant Reference Level reflecting the distribution of exposures
 - Less than a few mSv/y in most cases; above a few mSv/y in some cases but very rarely exceeding 10 mSv/y
- Start with appropriate collective protective actions and continue with individual ones (2 series)
 - Collective: related to workplaces and working conditions
 - Individual: related to each worker individually
- More or less thorough implementation of protective actions

Graded approach – NORM – Public

• Characterisation (who is exposed, when, where, how)

 Optimisation within a graded approach through the control of discharges, waste, recycled residues (including building materials)

- Selection of a relevant Reference Level
 - Generally less than a few mSv/y

• Stakeholder involvement (including multidisciplinary approach)

Graded approach – NORM – Environment

- Step by step approach
 - Generic assessment
 - Specific assessment
 - Detailed Environmental Impact Assessment (EIA) as necessary

- Use of tools (RAP...) and criteria (DCRL...) established by ICRP (Pub 124) as appropriate
- Stakeholder involvement

Ethical considerations

• See Pub 138

• Tolerability is challenging (what means unacceptable?)

Conclusions

 Many similarities between Radon and NORM (Rn is the main exposure in several processes involving NORM)

- The key recommendations are:
 - Characterisation of the situation
 - Justification of the protection strategy
 - Optimisation of the protection through an approach both integrated and graded

www.icrp.org