

Liberté Égalité Fraternité

RADIATION PROTECTION FOR NEW RADIONUCLIDES IN NUCLEAR MEDICINE

20th EAN workshop – 3 October 2023

<u>C. Michel</u>, D. Célier, D. Broggio, G. Phan, E. Blanchardon, H. Caplin, A. Isambert (Institute for Radiation Protection and Nuclear Safety, IRSN, France)

Session 3: Focus on (new) radiopharmaceuticals

ETSOF

Disclosure of Interest Statement

My co-authors and I have nothing to disclose

Context

Strong development of new radionuclide therapies (and diagnostics) : Lutetium-177, Actinium-225, etc.

French Nuclear Safety Authority (ASN) asked IRSN in 2020 to perform 4 studies on these new radionuclides

Aim : anticipate the radiation protection issues for the new radionuclides

Performed studies

1. Advanced study on new radionuclides

Method

To establish the list of promising radionuclides:

Meetings with 14 stakeholders in NM:

- France:
 - Competitive clusters
 - Radionuclide production research institutions
 - Nuclear medicine department
 - Professional bodies
 - Medicines/health products Agency
- Europe: EANM, Nuclear Medicine Europe, MEDraysintell, HERCA
- International: IAEA
- Identification of influence factors for the clinical development of new radionuclides and indicators (e.g. number and stage of clinical trials)

Classification about the probability of clinical use in France

Classification of new radionuclides

1=sure (Marketing authorization in France), 2=very likely, 3=likely, 4=unlikely Very subjective point of views according to the stakeholders: research **vs** clinic

	Diagnostic		
RN	Modality	Category	
⁶⁸ Ga	TEP		
⁸² Rb	TEP	1	
⁶⁴ Cu	TEP	2	
⁸⁹ Zr	TEP	2	
⁴³ Sc	TEP		
⁴⁴ Sc	TEP		
⁶² Cu	TEP	3	
^{117m} Sn	SPECT		
¹²⁴	TEP		
⁷⁵ Se	SPECT		
¹⁵² Tb	TEP	4	
¹⁵⁵ Tb	SPECT	4	
²⁰³ Pb	SPECT		

	Therapy		
RN	Modality	Category	
¹⁷⁷ Lu	β	1	
²²³ Ra	α	Ţ	
¹⁶⁶ Ho	β	ſ	
²²⁵ Ac	α	Z	
⁴⁷ Sc	β		
⁶⁷ Cu	β		
¹⁶¹ Tb	β		
¹⁸⁸ Re	β		
²¹¹ At	α	3	
²¹² Bi	α		
²¹² Pb	α		
²¹³ Bi	α		
²²⁷ Th	α		
¹⁴⁹ Tb	α	4	

« α » = α -emitters or with an α emitter in the filiation

2. RP for patients and their relatives

Individual treatment planning: Method

IRSN performed a study on individual treatment planning:

- regulatory context
- dose-response studies
- ressources required
- professionals position
- pro/cons arguments

Individual treatment planning: Results (1/2)

For example, Lutathera's (¹⁷⁷Lu-DOTATATE) Summary of Product Characteristics: <u>Posology</u>

The recommended treatment regimen of Lutathera in adults consists of 4 infusions of 7 400 MBq each.

Dose-response studies from the manufacturers:

The applicant did not submit dose-response studies.

(Lutathera's Assessment report)

https://www.ema.europa.eu/en/documents/assessment-report/lutathera-epar-public-assessment-report_en.pdf

Individual treatment planning: Results (2/2)

- Resources required :
- Personnel (trained and available)
- Equipment: activimeters, software
- Clinical dosimetry protocols
- Many professionals are in favor of the individual treatment planning (articles published++) and many others are against
- Pro/cons arguments found in the litterature, for example in a EC report (Konijnenberg, RP 194) :

Objections to individualised therapy	Solutions	
Time and resource consuming	Reimbursement for dosimetry studies	
Inconvenient for the patient	Keep it practical and relevant	
On-site expertise needed	Medical physics expert support mandatory	
No established dosimetry method	Benchmarks for dosimetry software	
Unclear dose-response models	Focussed radiobiology research in MRT	
Large uncertainties in absorbed dose	Improve accuracy in dosimetry process	
Safe activity from clinical trials / experience	Dose response model guided clinical trials	
One size fits all is more convenient	Sub-optimal patient care is not acceptable	

Individual treatment planning: Results (3/3)

Results of the analysis: work still needed on regulatory and research aspects

 \rightarrow IRSN made several proposals that could unlock the situation

Individual treatment planning: IRSN's proposals (1/2)

Regulatory ambiguities \rightarrow IRSN proposals:

- check with the authorities and scientific/professional bodies whether it is possible to include dosimetry-based administration (not just fixed dosage) in Summary Products Characterisitcs
- encourage clinical trials with new NRs to include a dosimetric component to gain a better understanding of the dose-effect relationship
- clarify the involvement of medical physicists in NM departments performing RN therapy

Improve knowledge of radiobiology \rightarrow IRSN proposals:

- obtain cell survival curves and dose-effect relationships in animals, and compare them with external radiation (reference)
- study (in vivo/vitro) the effect of dose rate and non-uniform distribution of activity as well as modulators of the response to radiation (e.g. stimulation of the immune system)

Individual treatment planning: IRSN's proposals (2/2)

Consolidate knowledge of dose-response relationships \rightarrow IRSN proposals:

- Systematically assess doses in clinical trials
- harmonize/develop dosimetric practices
- use high-performance dose calculation software
- -have resources in terms of personnel trained in dosimetry.

+ Create databases or registers of NM procedures (imaging + treatments) for *a posteriori* studies (dose assessments/biokinetics to obtain reliable data on dose-effect relationships)

Calculation principle:

- Dose rate around patient at the moment of release, and its decay with time
- Exposure scenario: frequence, time frame, and contact distance

IRSN developped a dose calculation method for relatives:

- I- choice among scenarios and calculation methods already published
- 2- improvement of the model for dose rate decay

mono-exponential \rightarrow bi-exponential (more adapted for out-patient treatments)

3- checking results with test calculations

Calculation of doses likely to be received → contact restriction times

Bi-exponential model:

$$D_{bi} = \frac{\dot{D}_{out}k_d}{(f_r e^{-\lambda_r t_{out}} + f_l e^{-\lambda_l t_{out}})} \left(\frac{f_r}{\lambda_r} \frac{1 - e^{-\lambda_r \Delta t}}{1 - e^{-\lambda_r \tau}} e^{-\lambda_r t_{out}} e^{-\lambda_r d_{res}} + \frac{f_l}{\lambda_l} \frac{1 - e^{-\lambda_l \Delta t}}{1 - e^{-\lambda_l \tau}} e^{-\lambda_l t_{out}} e^{-\lambda_l d_{res}} \right)$$
Fixed by the « maximal » retention
and release date : known
Normalization by dose rate
measurement
Correction for distance

Dose rate *b*(t)

Results strongly depends on input parameters: Biokinetics: decay model

exposure scenario

dose constraints: by administration vs whole treatment
 initial dose rate

- initial dose rate
- etc.

✓ Validation of the model:

Results consistent with those from 2 articles, using the same input parameters

(Carlier et al. 2004 doi: 10.1051/radiopro:2004012. / Levart et al, 2019 doi: 10.1186/s40658-019-0243-1.)

Calculation method applied: ¹⁷⁷Lu et ¹⁶⁶Ho

Order of magnitudes <u>according to input parameters:</u>

Restriction time	¹⁷⁷ Lu	¹⁶⁶ Ho
Adults	~10 days	Some days
Children	~15 days	~1 week

Input parameters:		¹⁷⁷ Lu	¹⁶⁶ Ho
	Dose rate @1m, at the moment of release	15 μSv/h	60 μSv/h (« maximal » value considered)
	Dose constraints	3 mSv (adults) et 1mSv (enfants) for the whole treatment (4 administrations for ¹⁷⁷ Lu and 1 administration for ¹⁶⁶ Ho)	

Actions following the IRSN study

- IRSN calculator initially developped for ¹⁷⁷Lu et l'¹⁶⁶Ho for this study, then completed for other common therapies: ¹³¹I and ⁹⁰Y
- Publication in open access: Journal of Radiological Protection (SRP Society of Radiological Protection), along with the Excel calculation file in supp. material

https://iopscience.iop.org/article/10.1088/1361-6498/acc4d1

WG radioprotection of the French Society of Nuclear Medicine (SFMN) - development of a calculator in collaboration with the French Society of Medical Physics (SFPM)

Objective: unique calculator in use in French NM departments, that takes the advantages of both

3. Occupational RP in case of patient death

Occupational RP in case of patient death: Objectives

Assessment of the doses which could be received:

- by undertakers : transport and embalming of the body
- by crematorium staff

Transport and embalming: Method

Most promising therapeutic radionuclides considered: Lu-177, Ra-223, Ho-166 et Ac-225

$$H^{*}(10) = \dot{H}^{*}(10) \cdot \Delta t = \frac{\Gamma \cdot A \cdot d_{r\acute{e}f}^{2}}{d^{2}} \cdot e^{\frac{-\ln(2) \cdot t_{1}}{T_{eff}}} \cdot e^{\frac{-\ln(2) \cdot t_{2}}{T_{phy}}} \cdot \Delta t \leq 300 \,\mu Sv$$

$$Hyp : 3 \,deceased$$

$$hyp : 3 \,deceased$$

$$patients/year$$

$$(< 1 \,mSv/year)$$
Hypothesis for time and distance :

- Transport : 1 h at 50 cm
- Embalming : 2 h at 50 cm

Hypothesis validated
 by funeral personnel

Administered activities, equivalent dose rate constant et effective half-lives : values from literature with conservative approach

Transport and embalming: Results and conclusion

Crematorium staff exposure: Method

Therapeutic RN considered: Cu-67, Y-90, In-111, I-131, Sm-153, Ho-166, Er-169, Lu-177, Re-186, Re-188, At-211, Pb-2012, Bi-212, Bi-213, Ra-223, Ac-225

Visits in 3 crematoria to understand the operations carried out according to the type of fume filtration system (small vs. large container)

Staff:

- technical (in charge of cremation)
- administrative (office)
- external technician (large container maintenance)

Protection considered: walls + PPE

Activity considered : Activity administered to the patient without any decay (most conservative assumption)

Crematorium staff: Results and recommendations (1/2)

Only a few cases lead to more than 300 μSv for I-131, Ac-225 and In-111 (therapeutic application) in some scenarii (e.g. external technician)

To reduce exposure, IRSN recommends:

- for I-131, to increase the time between death and cremation as much as possible, in compliance with national regulations and with the family's agreement
- every effort should be made to inform the crematorium of the radioactive nature of the body, so that recommendations can be applied

Crematorium staff: Results and recommendations (2/2)

Even in the worst-case scenario, application of the 3 recommendations below will drastically reduce worker exposure to below 300 μSv :

3 : If **1** and **2** not possible, **increase the distance** between the contaminated filter storage area and the other rooms in the crematorium (in particular the administrative rooms)

General conclusion

IRSN's studies in line with current European concerns:

Consistency of the new radionuclides identified by IRSN with a NUC ADVISOR report (on behalf of the EC)

"Co-ordinated Approach to the Development and Supply of Radionuclides in the EU", N°ENER/D3/2019-231 - Final Report

European project "SIMPLERAD" whose objective is "to improve the understanding of the **links** and the **inter-dependencies** between the European **pharmaceutical legislations** and the **Euratom** radiation protection requirements" <u>https://earl.eanm.org/simplerad</u>

HERCA WG Medical application, in particular the WP Nuclear Medicine, work on the radiation protection issues in radionuclide therapy:

Article "Radiation safety of current European practices of therapeutic nuclear medicine: survey results from 20 HERCA countries", Bly R. et al, DOI: <u>10.1088/1361-6498/acafef</u>

Thank you for your attention.

Reports available, in French, on:

Nouveaux radionucléides en médecine nucléaire pour des actes à visées diagnostique, ou <u>thérapeutique (irsn.fr)</u>

and

https://www.irsn.fr/sites/default/files/2023-02/Avis-IRSN-2023-00004.pdf

(patient death/cremation)

