19th European ALARA Network

Athens, 27.11.2019

Incorporation of radionuclides by workers:

Measurements vs. evaluation with GEANT4 simulations

Siria MEDICI

CERN &

Institute of Radiation Physics (IRA/CHUV)

∑@siria.medici@cern.ch

Presentation overview

• Context

• Risk of internal contamination at CERN & internal monitoring in Switzerland.

Approach for internal monitoring programme

- Instrument characterisation procedure.
- Measurements & MC simulations.
- Prospects & preliminary considerations
 - Geometry evolution and practical example.
- Conclusions

Faculty of Biology and Medicine

Prospects & considerations

Conclusions 00

Context

Major event at CERN : commissioning of the CERN-MEDICIS* facility (since 2018)

- Aim : production of (exotic) radioisotopes for medical applications.
- Handling of unsealed sources, high activity, short half-life (¹⁴⁹Tb, ⁴⁷Sc, ...).
- Radionuclides shipped to the partner centres (such as university hospitals) :
 → radiolabelling tests / ♀ dosimetry ·····> radiopharmaceuticals.

 \rightarrow Increase risk of internal contamination among the workers.

 \rightarrow Update the internal monitoring programme for the workers.

Conclusions

Internal contamination and internal monitoring programmes

Faculty of Biology and Medicine

Internal contamination and internal monitoring programmes

Absorption (skin or wounds)

- The stochastic risk associated to an internal contamination is quantified by the committed effective dose E_{50} (Sv).
- No operational quantity directly measurable.
- E_{50} can be retrospectively assessed through :
 - *in vivo* measurements (radiations emitted from the body); —
 - *in vitro* measurements (of a biological sample).
- An internal monitoring programme aims to verify that*:
 - The workers are efficiently **protected** against the risk of intake of radionuclides.
 - The protection complies with legal requirements.
- The new internal monitoring programme at CERN is inspired by the Swiss regulation (annual limit: $E_{50} = 1$ mSv).

Conclusions

00

- Periodic, rapid & easy measurement, done by workers themselves (ideally) using conventional RP instruments.
- Threshold \rightarrow should guarantee detection of intakes leading to annual $E_{50} > 1 \text{ mSv}$.

Adapt the Swiss approach

Define a general & pragmatic approach to set up *in vivo* screening measurements to detect intakes leading to an annual $E_{50} > 1 \text{ mSv}$.

- Task-related operations \rightarrow time of potential intake is known.
- Rapid turnover of CERN workers: periodic screening

 $E_{50,min}$

- Determine the minimum detectable dose associated to the screening measurement $(E_{50,min})$.
- Limit the number of authorised operations for each worker, so that annual $E_{50} < 1 \text{ mSv}$.
 - Dose per unit intake (Sv/Bq).
 - Dosimetric models.
 - Radionuclide.

- Minimum detectable activity (Bq). 🧲
- Instrument (characteristic limits, efficiency).
- Phantom.

- Retention or excretion function (Bq per inhaled Bq).
- Biokinetic models.
- Radionuclide, elapsed time.
- (Biokinetic model solver → not in the aim of this talk)

Conclusions

Instrument choice

Conventional RP instruments

Spectrometers

Pictures: https://www.nmas.no/produkt/59556475/scintillator-probe http://www.laurussystems.com/products/products_pdf/LS_thermo_FH-40.pdf http://www.tridinamika.com/shop/products/saphymo-como-170-300/ https://all-pribors.ru/opisanie/43292-09-falcon-5000-45430 https://www.directindustry.it/prod/canberra-industries/product-23661-555299.htmi

Conclusions

ERN

Phantom choice

simple

• Create a robust model & validate each step with MC simulations

Conclusions

MDA (conventional RP instruments)

$MDA = CL \cdot CF$

CL : characteristic limit

(mesurand in: nSv/h or cps)

- Decision threshold & detection limit.
- Found according to ISO 11929 standard.
- Determined for different background values.

CF: conversion factor mesurand – activity (Bq/(nSv/h) or Bq/cps)

 Obtained by placing known (reference) sources inside a simplified torso phantom :

⁵⁷Co (124 keV), ¹³³Ba (268 keV), ¹³⁷Cs (662 keV), ⁶⁰Co (1253 keV)

<u>S Medici</u>, P Carbonez, J Damet, F Bochud, C Bailat, A Pitzschke. "Detecting intake of radionuclides: In vivo screening measurements with conventional radiation protection instruments." *Radiation Measurements* (2019).

Conclusions

Conversion factor (CF) : considerations

- ► We characterised our instrument with common reference sources.
- ► **Q**: can we estimate *CF* for untested radionuclides ?
- \rightarrow R: MC simulations ?

Phantom filled with **air**

Phantom filled with water

Context

Conclusions

Geant4 MC vs experimental results

- Simulate H*(10) at different distances from the phantom surface.
- Tally size = average sensitive surface of the tested RP instruments.
- Tally positioning = RP instruments positioning

MC simulations performed with the help of Dr Laurent Desorgher (IRA/CHUV).

Conclusions

Geant4 MC

- MC validation with phantom filled with air :
 - good agreement (< 10%) with the theoretically expected results.</p>
- Comparison between :
 - experimental CF_{EXP}
 - simulated CF_{MC}

(in
$$\frac{kBq}{cps}$$
 or $\frac{kBq}{nSv/h}$);
(always in $\frac{kBq}{nSv/h}$).

• $CF_{EXP} = f \cdot CF_{MC}$

f includes the instrument's energy dependence, conversion factor between count rate and dose rate, geometry,

Context

Faculty of Biology and Medicine

Internal monitoring approach

Prospects & considerations

Conclusions

Geant4 MC

000

Find experimental CF for untested radionuclide

• Find instruments' response for two untested radionuclides: ^{99m}Tc & ^{152}Eu

Source : Nucleonica - nuclear science internet portal (www.nucleonica.com)

Context

Faculty of Biology and Medicine

Find experimental CF for untested radionuclide

 \overline{E} = average energy (weighted by photon emission probability $p_{\%}$)

Faculty of Biology and Medicine

Find experimental CF for untested radionuclide

Energy range for interpolation (influencing : $p_{\%}$, \overline{E} , and CF_{MC}) = 40 keV – 3 MeV

	Relative difference between estimation and measured values		
Instrument	Tc-99m	Eu-152	
6150AD-b/H	-3%	+8%	
FHZ 512 BGO	+45%	-27%	
CoMo 170	-6%	+13%	
LB 6393	+5%	+3%	
LB 1234	+3%	-15%	

Conclusions

Prospects: from simple to more complex geometry

- Extend the approach to more realistic /anthropomorphic geometries.
- More realistic CF estimates.
- Different filling geometries.
- Test portable γ-spectrometers:
 - Radionuclide identification.
 - Radionuclide mixtures.

Conclusions

Prospects: from simple to more complex geometry

Torso phantom : a conservative approach for RP officers ?

0000

Internal monitoring approach

00000000000

Context

000

Prospects & considerations

Conclusions

00

 $CF_{torso ph.}$ always more conservative than $CF_{IGOR ph.}$ (factor between 1.2 and 6.5 for all tested sources)

E_{50,min} assessment: practical example

- Example : CERN-MEDICIS terbium collections + scandium offline separation.
- Screening measurement : half an hour after the suspected intake (*T* = 30 min).
- Intake via inhalation : AMAD = 5 μ m, default absorption type.
- Screening measurement position : chest.
- *e*_{inh} from ICRP 68, *m(T)* from our biokinetic model solver.
- Background = 100 nSv/h.

F.	-MDA	<i>e</i> _{inh}	
^L 50,min	- MDA	$\overline{m(T)}$	

	$E_{50,min}$ [µSV] (rounded up to nearest 10), CL = detection limit (β =5%)					
圖(23,5)	Instrument	¹⁴⁹ Tb	¹⁵² Tb	¹⁵⁵ Tb	⁴⁷ Sc	
ſ	CoMo 170	170	30	20	140	

Conclusions & prospects

- Validated the proof of concept:
 - The Swiss approach can be adapted to the CERN requirements.
 - Multiple screenings before exceeding the annual E_{50} limit of 1 mSv.
- Evaluated the performance of 5 conventional instruments widely used at CERN.
 - Screening measurement proposals :
 - ¹⁴⁹Tb, ¹⁵²Tb, ¹⁵⁵Tb, ^{111m}Cd, ^{199m}Hg, ⁴⁷Sc, ¹⁷⁵Yb, ¹⁹⁴Hg/ ¹⁹⁴Au.
- The screening measurement proposals have been tested by the local experts and improved thanks to their feedback.
- Explore the possible use of portable γ -spectrometers (*ongoing*):
 - Radionuclide identification / mixture.

Conclusions

IRA

Acknowledgements

- François BOCHUD
- Pierre CARBONEZ
- Jérôme DAMET
- Andreas PITZSCHKE

- Élodie AUBERT
- Alexandre DORSIVAL
- Daniel PERRIN
- Fabio POZZI
- Nicolas RIGGAZ
- Markus WIDORSKI

- Claude BAILAT
- Thierry BUCHILLIER
- Laurent DESORGHER
- Frédéric JUGET
- Michel LERESCHE
- Marietta STRAUB

IRA

colleagues

Supervisors

Faculty of Biology and Medicine

Thank you for your attention

