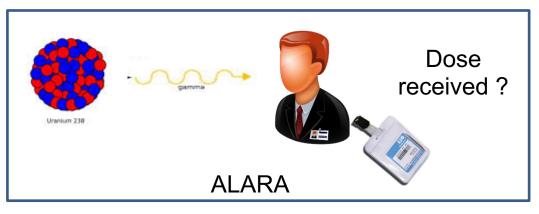
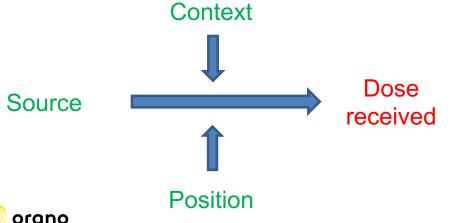
Manuela TM

Mobile Apparatus for Nuclear Expertise and Localisation
Assistance


Benjamin CHAGNEAU


Manuela Context

Podium showed some issues with dosemeters and asks the question of getting the information differently?

- ⇒ Let me modelize your environment
- ⇒ In this environment, let me modelize your source
- ⇒ Then let me track the movement of your workers

In medical:

- the source (x-ray machine/patient) is in the intervention room
- the source is well known, or if not, is quite easy to be so.
- Podium shows that tracking is possible.

What about the context in Nuclear Industry?

Outdoor & indoor

Ok And what about source description?

- Example Alarm & DIMR Cattenom

=> The need for good radiological informations

What about mapping and measurements position?

Mapping

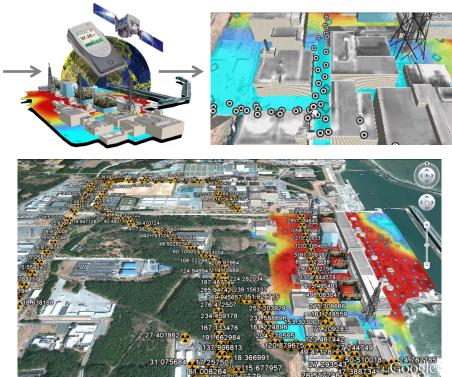
Dose rate Measured?

Example: Human factor...

So modelisation is not a good idea?
It is not only a good idea but it is also « mandatory »

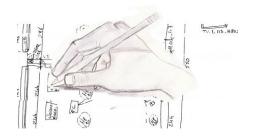
- Exemple of a nearly-accident in Bugey
- Highest safety expectations in nuclear industry
- Price of the waste....

How to solve the problem of input data?

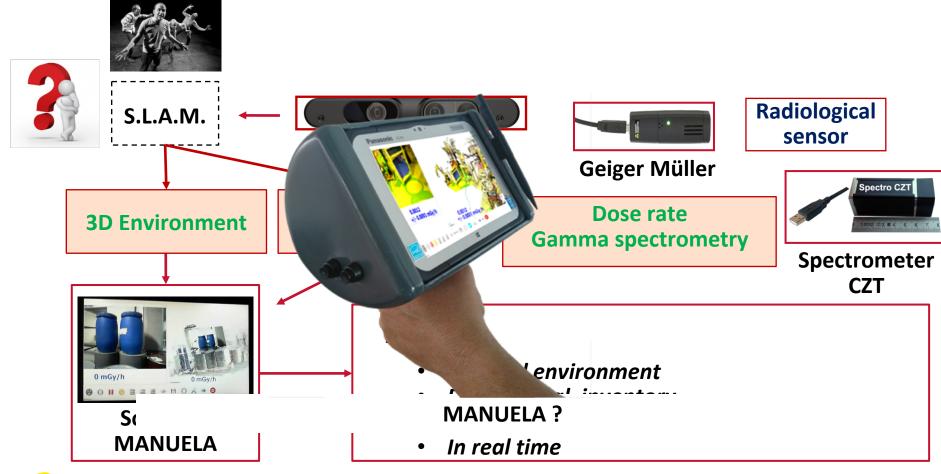


Fukushima 2011

- Old map
- Need for infrastructures
- 4m accuracy


Indoor mapping?

Environment variations can be fast (NPP shutdown for fuel reload, historical maps outdated,...)



MANUELA: A tool for radiological and topographical 3D mapping

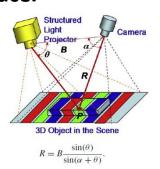
Manuela Principle

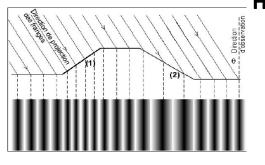
8

SLAM Basics

Simultaneous Localization ...

Odometry: The use of data from motion sensors to estimate change in position over time.

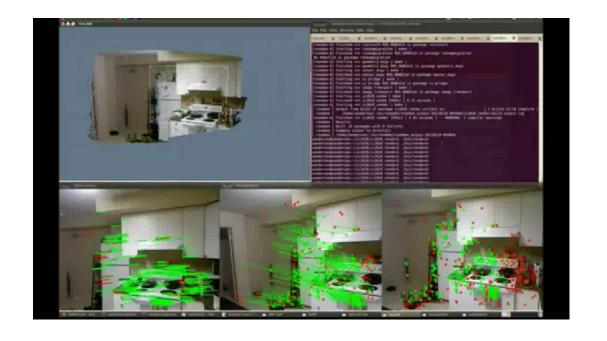

Odometry and topographic instrumentation

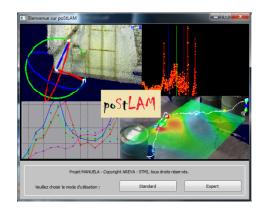

... And Mapping

There is differents kinds of camera which allow a 3D mapping (Time of flight, Structured Light, Event, ...)

Structured light projector sensor (Kinect 1 of Microsoft)

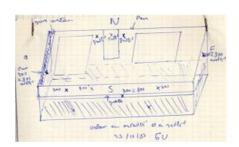
- Active stereo: Features projection on the scene to simplify the matching problem
- Projected pattern disturbances are linked to depth change at the objet
 surface.
 Half randomly generated framework




Odometry and topographic instrumentation

By mixing the two...

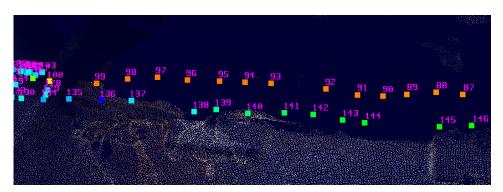
Manuela Benefits



VS

2 – True measurements position

- Measurement position given in a X, Y, Z reference.
- Localisation uncertainties evaluation
- Répétabilité de la mesure possible

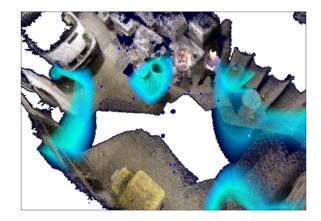


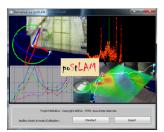
3 - Measurement automatized

- Measurement made each seconds and saved in the virtual space.
- More points → Better caracterization with the same gesture.

4 - Real time

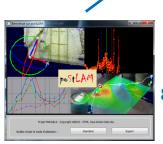
 3D modeling and hot spot retroprojection available directly at the end of the scan.

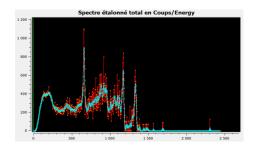




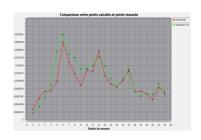
5 – Improved 3D environment

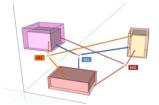
More tools (isodoses, dimensional grid, ...)


6 - ALARA approach tools


- Avatars with dosimeter on the chest.
- Standalone dosimeters.
- Integrated dose on a route.
- Dose optimization.

7 – Gamma spectrometry





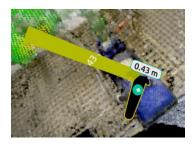
8 – Calculations and simulations

- Activity calculation with transfert function and solver
- o Lead protection simulations, removing a source...

Export to different CAD software (tool FRAMATOME : Victoria)

9 – Immersive environment

- Easy deployment
- Visualization of all informations you need without taking any dose



10 – Interactive environment for operator's training

- o Virtual dosimeter
- Distance measurements
- Contamination visualization

Manuela Feedback

Exemples of use

3D mapping

Making 3D mapping in specific area (hall, cells, rooms...) and give a more complete radiological survey including, if asked, spectrometry

Feedback

Fessenheim NPP:

- Intervention in tight environment
- Validation of point of interest
- Orange zone signs verification

Cattenom NPP:

framatome

Steam Generator N-2 Investigation, entry data

BENEF

ENTRY DATA CONTROL

EVENTS O.Z.

COMMUNICATION

PERFORMANCE

QUALITy

20 rooms 3D mapping of the RB n°2 – Fessenheim NPP

QUALITY

More points

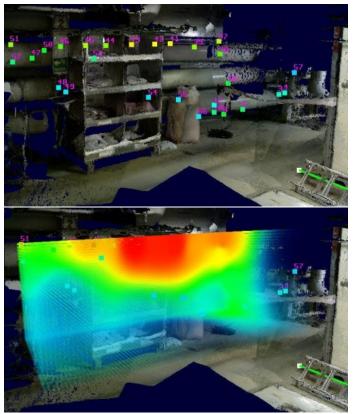
Automatic save

Traceability

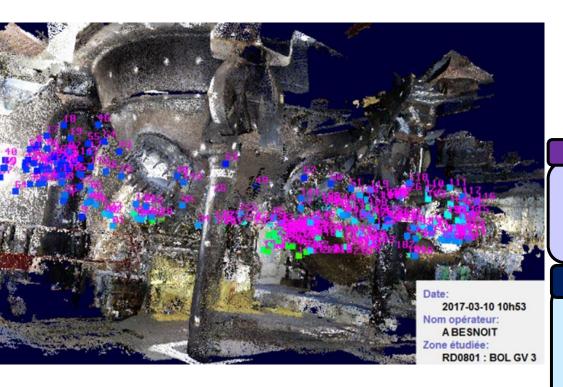
COMMUNICATION

Validation of risks and point of interest

ENTRY DATA CONTROL


Precise and complete knowledge of the radiological state of the premises

PRODUCTIVITY


Intervention efficiency: 60m²/h

3D MAPPING: Fessenheim

Cattenom 3D Mapping

Achievement of entry data for the inquiry of the Steam Generator Replacement at Cattenom 2 made by AREVA

PERFORMANCE

Preparation and optimisation of the work site Reliability of entry data

QUALITY

Much more points

Automatic save

Outputs of MANUELA were inputs for VICTORIA

ALARA APPROACH

ALARA APPROACH

Reducing individual dose by increasing quality of the work site preparation

FEEDBACK

Belleville NPP:

- Workstation optimization
- Suitability and efficiency of lead protection
- Simulation and choice of optimized scenario

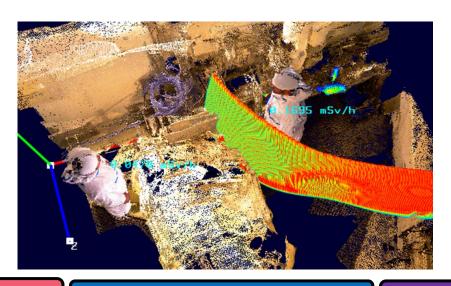
Fessenheim NPP:

framatome

 Visualization of the dose distribution in high stakes area

BENEF

SAFETY


DOSIMETRY

WORK SITE PERFORMANCE

COMMUNICATION

ALARA Approach in Belleville

DOSIMETRY

Visualisation of the isodose surface at 10 mRem/h
Workstation optimisation (dose divided by 3)

COMMUNICATION

Campaign to raise awareness of operators

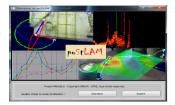
Better teaching methods in pre-job briefing

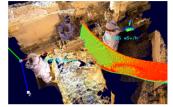
WORK SITE PERFORMANCE

Workstation optimization
Work site preparation optimization
Choice of optimized protection

Conclusion

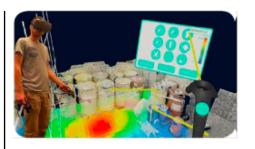
- Change in paradigme
- (examples of contacts measurements)





Manuela

Measurement tool


- 3D modeling and radiological mapping
- Dose rate, spectrometry (CdZnTe)
- Interpolation, retroprojection

PoStLAM Post-treatment software

- Virtual space with measured data.
- Dimensions, isodoses.
- Dosimetry (avatar), spectrum ray selection (CZT)
- Expertise

MANUELA – VR Virtual reality

- Immersion into the zone
- Virtual tape and radiameter
- Operation preparation
- Training

