# **ALARA** in Radiography

Michael Fuller on behalf of the

International Source Suppliers and Producers Association (ISSPA)









Ra-226



"Fish Pole" Technique





## Time – Distance – Shielding



# Many Flavors

















# Source Styles



# Isotope Use

| Isotope | Half Life | Gamma Energy Range | Approximate Steel<br>Working Thickness | Gamma Constant<br>R/h (mSv/h) per Ci<br>@ 1 meter | Half Value Layer of<br>Lead cm (in) |
|---------|-----------|--------------------|----------------------------------------|---------------------------------------------------|-------------------------------------|
| Co-60   | 5.27y     | 1.17 and 1.33 MeV  | 50 - 150 mm                            | 1.368 (13.68)                                     | 1.27 (0.5)                          |
| lr-192  | 74d       | 206 - 612 keV      | 12 - 63 mm                             | 0.591 (5.91)                                      | 0.51 (0.2)                          |
| Se-75   | 120d      | 97 - 401 keV       | 3 - 29 mm                              | 0.826 (8.26)                                      | 0.1 (0.039)                         |
| Yb-169  | 32d       | 63 - 308 keV       | 2 - 20 mm                              | 0.327 (3.27)                                      | 0.08 (0.032)                        |
| Cs-137  | 30y       | 662 keV            | 12 - 63 mm                             | 0.376 (3.76)                                      | 0.64 (0.25)                         |
| Tm-170  | 129d      | 52 - 84 keV        | 2 - 15 mm                              | 0.006 (0.06)                                      | 0.61 (0.24)                         |

# Isotope Use – Example: <sup>60</sup>Cobalt











# Isotope Use

| Isotope | Half Life | Gamma Energy Range | Approximate Steel<br>Working Thickness | Gamma Constant<br>R/h (mSv/h) per Ci<br>@ 1 meter | Half Value Layer of<br>Lead cm (in) |
|---------|-----------|--------------------|----------------------------------------|---------------------------------------------------|-------------------------------------|
| Co-60   | 5.27y     | 1.17 and 1.33 MeV  | 50 - 150 mm                            | 1.368 (13.68)                                     | 1.27 (0.5)                          |
| lr-192  | 74d       | 206 - 612 keV      | 12 - 63 mm                             | 0.591 (5.91)                                      | 0.51 (0.2)                          |
| Se-75   | 120d      | 97 - 401 keV       | 3 - 29 mm                              | 0.826 (8.26)                                      | 0.1 (0.039)                         |
| Yb-169  | 32d       | 63 - 308 keV       | 2 - 20 mm                              | 0.327 (3.27)                                      | 0.08 (0.032)                        |
| Cs-137  | 30y       | 662 keV            | 12 - 63 mm                             | 0.376 (3.76)                                      | 0.64 (0.25)                         |
| Tm-170  | 129d      | 52 - 84 keV        | 2 - 15 mm                              | 0.006 (0.06)                                      | 0.61 (0.24)                         |



## Selenium 75 Benefits / Drawbacks

#### **Benefits**

- Lower energy easier to shield
- Softer gamma spectrum better image quality
- Lower gamma constant reduced exclusion zone size
- Longer half-life than Ir-192

#### **Drawbacks**

- Lower energy less penetration
- Elemental selenium highly volatile
- More expensive than Ir-192



# SCAR Technology

SCAR = Small Controlled Area Radiography
also marketed as

SAFER (Small Area for Exposure Radiography)

or

Close Proximity Radiography









# Close Proximity / SCAR Benefits









## Design Inputs

Regulatory

**Operational Safety** 

**Industry Events** 

**Manufacturing Costs** 

National / International Standards

**Transportation Safety** 

**Customer Input** 

**Available Technology** 

# Conflicting Desires



#### User

Device needs to be as light as a feather



#### Regulator

No Depleted Uranium



#### User

Simple to operate



#### Regulator

Loaded device should have zero radiation leakage

#### Manufacturer

DU offers best shielding

#### Regulator

Foolproof

# Conflicting Desires



#### U.S. User

Higher activity sources mean shorter exposure times

## User

Source and/or device needs to last forever

#### User

Free

### **≠**





#### Some non-U.S. Users

Cannot use sources above XX curies

#### **Physics**

Everything has a finite operational life

#### Manufacturer

How much money do you have?



## **Product Adoption**

- Can the product be priced to recover development costs, manufacturing costs, and at the same time be enticing to buyers?
- Will the customers require a new license or change to existing license?
- Will the new product require significant training for the customer?
- Will the new product change traditional radiography methods or results?
- Will the new product obsolete existing accessories?
- Will the new product a provide a marked improvement (operational, compliance)?



# **ALARA** Implementation

Exposure ALARA is primarily dictated through regulatory requirements.

Designs developed with many inputs, including regulatory.

SCAR technology seeing some adoption.

Selenium-75 use is on the rise.

Training and incorporation of a safety culture