

Protecting and improving the nation's health

ERMIN, European Model for Inhabited Areas: use within a wider recovery decision making framework

Introduction

Introduction

ERMIN model and tool

Development

Model

Implementation in jRODOS and ARGOS DSS

Using ERMIN within the recovery decision-making environment

Challenges of recovery within inhabited areas

Using ERMIN to support decision-making

Examples

Summary/conclusions

ERMIN Development

EC Projects: EURANOS, NERIS-TP, PREPARE and HARMONE (OPERRA) Partners: PHE, DTU, HMGU, KIT, DEMA, PDC, BfS, UCEWP Implemented in jRODOS and ARGOS Lessons learnt from development CONDO, LCMT(RODOS), and EXPURT

Currently looking at uncertainty in ERMIN in the EC project "Confidence" part of the CONCERT project

ERMIN model

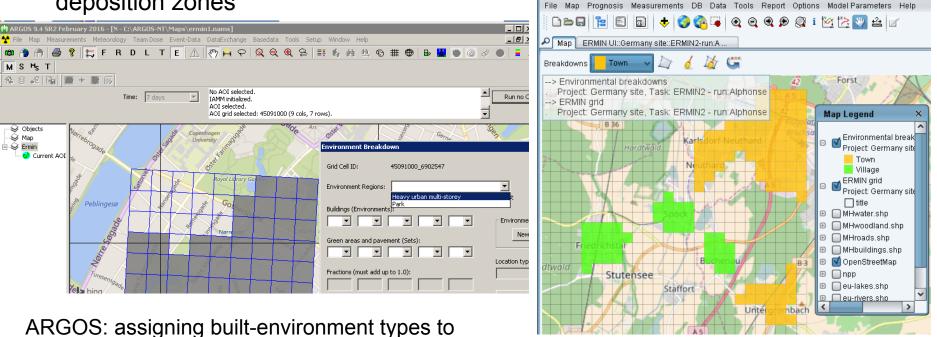
51 of the 59 Management options from European Recovery [Handbook: http://www.eu-neris.net/index.php/library/handbooks.html]

🛓 Available Countermeasure Techniques Properties

Select	Option
	1:Firehosing walls
	17:Sandblasting walls
	18:High pressure hosing walls
	20:Treatment with ammonium nitrate
	21:Mechanical abrasion of wooden walls
	27:Peelable coatings
	2:Turning paving slabs
	4:Tie-down to paved with bitumen
	12:Tie-down to paved with water
0	24:Eirobacing navad

24:Eirobacing neved

[jRODOS window for selecting options]


ERMIN - implementation

iRODOS and ARGOS: map based interface, user delineates zones of environments and management options

Initial contamination from Atmospheric Dispersion Model or user delineated 🛃 JRodos February 2017 Update 1 - admin (privi... administrator), connected to localhost:1198

deposition zones

model grid squares

iRODOS: assigning built-environment types to model grid squares

Challenges of recovery in inhabited areas

A great many stakeholders, including the public

The accident and recovery options can profoundly impact peoples lives for many months or years

Decision-making is non-linear, it has feedbacks and iterations

Uncertainty on predictions of residual dose

A large number of management options; combinations, locations and implementation times

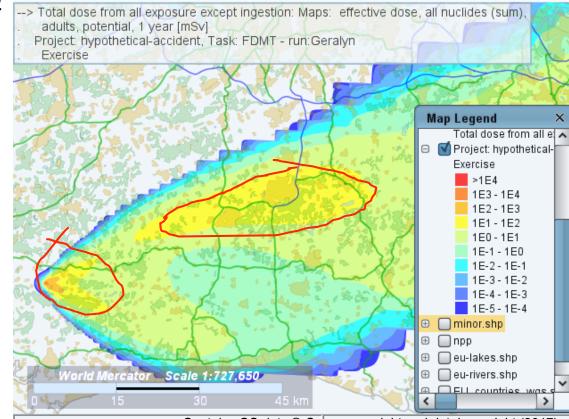
Different decision making processes/arrangements/structures possible

Rarely exercised

"... It is important that the public participate fully in establishing the goals for recovery, be they based on radiological, economic, environmental or other criteria."

National Nuclear Emergency Planning and Response Guidance (NNEPRG 2015), https://www.gov.uk/government/publications/national-nuclear-emergency-planning-and-response-guidance

ERMIN in the decision making process


"Recovery is best achieved where the recovery process begins as early as possible during the response." (NNEPRG 2015)

Inhabited Areas Handbook V4, PHE-CRCE-018: Part2

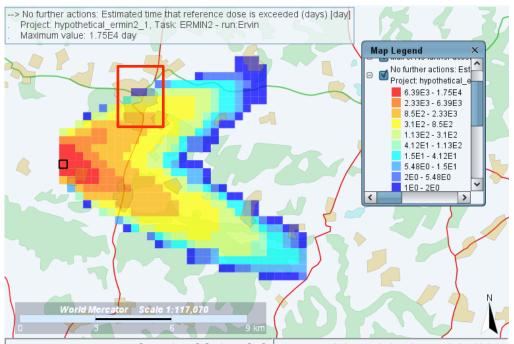
Define the situation

"Establish a picture of who or what has been affected, to what extent. Including levels of radioactive contamination, ... land use affected ... and impacts on people ..." (NNEPRG 2015)

In the early and transition phases little monitoring available: reliance on model output. Treat with caution.

Contains OS data © Crown copyright and database right (2017)

Hypothetical accident at fictional NPP for illustration, output from RODOS FDMT. Showing 1 year potential dose from all pathways except ingestion

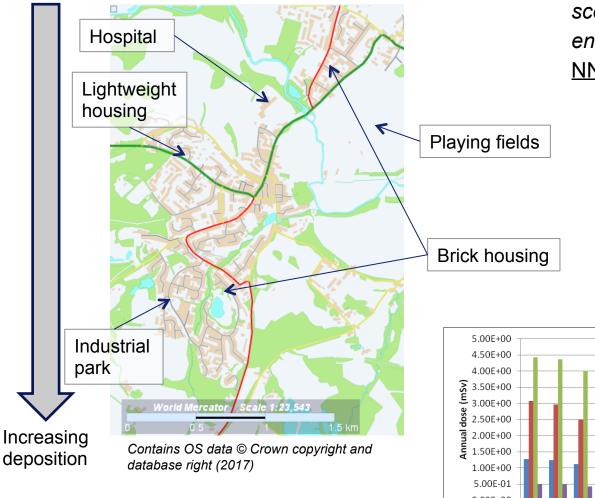

Assess Impacts

"Use data and models to assess projected doses to people living in the affected areas." (NNEPRG 2015)

In early phase, project future doses for a simple default environment.

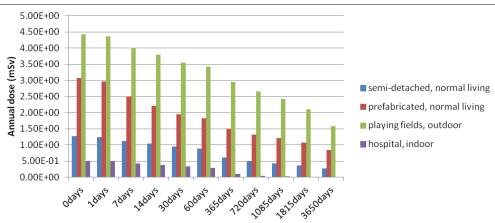
Apply dose criteria to assess period/duration of impact

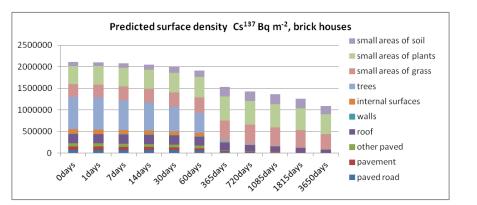
Look at consequences of varying criteria



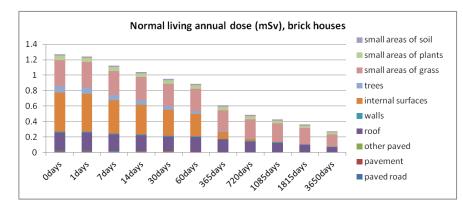
Contains OS data © Crown copyright and database right (2017)

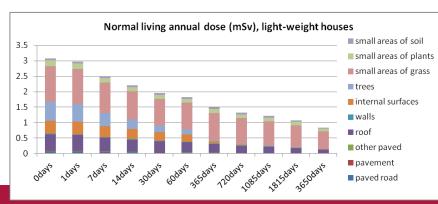
Hypothetical accident at fictional NPP for illustration, output from ERMIN2 shows predictions of the days that the projected dose exceeds a reference dose given as 20 mSv/y normal living (0.9 occupancy) in brick houses

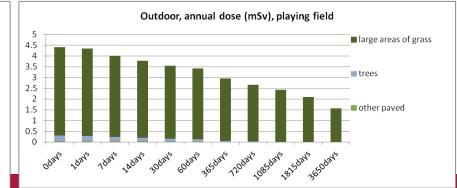

(0.5 occupaticy) in blick houses.			
Red	>20years		
Dark Orange	6-20 years		
Light Orange	2-6 years		
Yellow	1-2 years		
Others	< 1year		



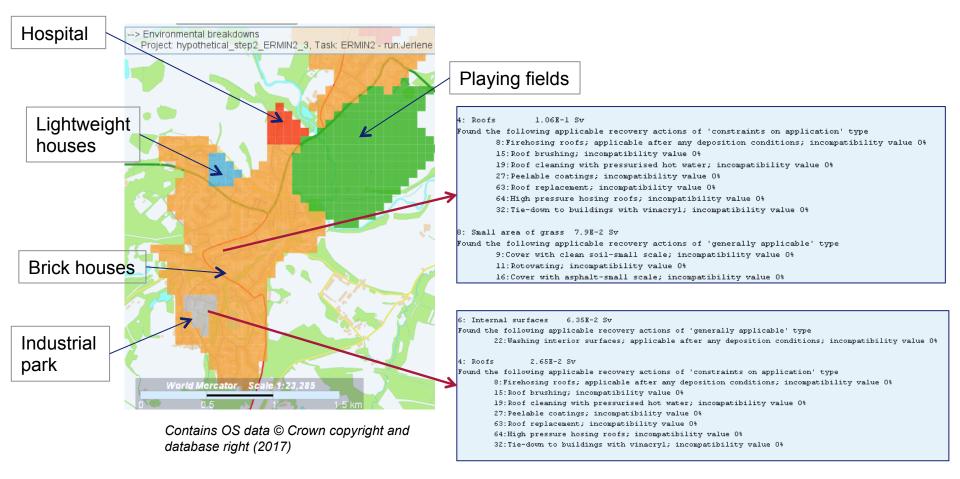
"... Take account of exposure scenarios habits and prevailing environmental conditions" (<u>NNEPRG 2015</u>)


Environment
Street of detached prefabricated houses
Street of detached prefabricated houses
Street of semi-detached houses with basement
Street of semi-detached houses without basement
Street of terraced houses
Multi-storey block of flats amongst other house blocks
Multi-storey block of flats opposite parkland
Industrial site
Large open area




Identify goals and options

"Engage communities in establishing recovery goals – based on radiological, economic, environmental and other criteria. Agree how radiological risk will be equated with measurable radioactivity in the environment" (NNEPRG 2015)



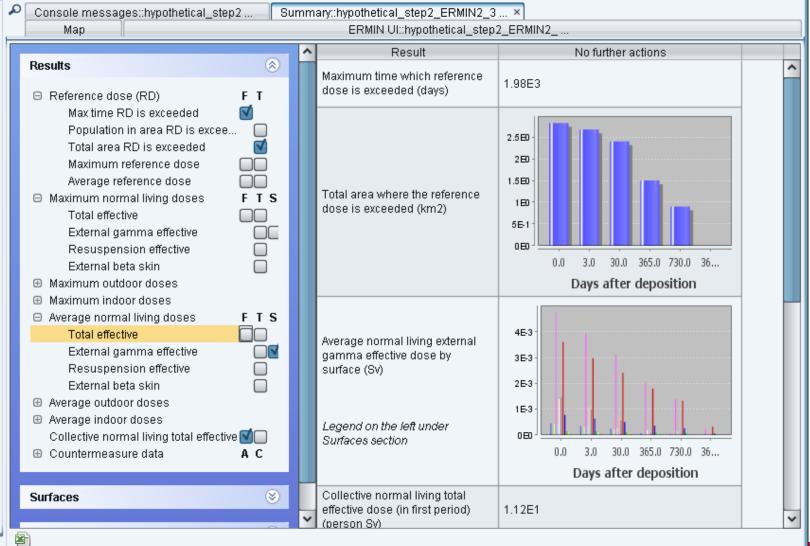
11 ERMIN inhabited recovery - European ALARA Network, Lisbon, May 2017

Identify goals and options

The jRODOS "Countermeasure Wizard" suggests management options for different zones

Options are put together as packages: "strategies"

User defined strategies are compared against a base line "No Further actions (NFA)" strategy.


NFA allows for options already undertaken in previous cycles of decision making

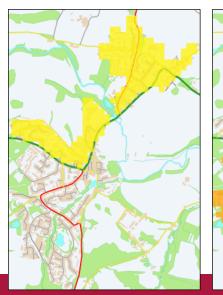
All other strategies include the NFA options

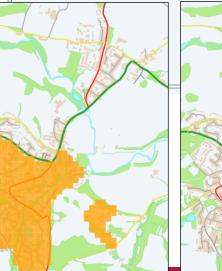
"Consider effectiveness, feasibility, capacity, time scales, constraints, waste generation, worker doses, costs, impact on society, acceptability" (NNEPRG 2015)

Summary::hypothetical_step2_ERMIN2_3 ... ×

Summarynypotnetical_step2_ERMIN2_3 4				
Result	No further actions			
Maximum time which reference dose is exceeded (days)	1.98E3	^		
Maximum reference dose (in first period) (Sv)	1.27E-1			
Average reference dose (in first period) (Sv)	1.38E-2			
Maximum normal living total effective dose (sum of resuspension and external gamma) (in first period) (Sv)	1.27E-1			
Average normal living total effective dose (sum of resuspension and external gamma) (in first period) (Sv)	1.38E-2			
Collective normal living total effective dose (in first period) (person Sv)	1.11E1			
Maximum strategy period total effective dose over all countermeasures (Sv)	0E0			
Average individual worker total effective dose over all countermeasures (Sv)	0E0			
Collective individual worker total effective dose (Sv)	0E0			
Total work summed over all countermeasures (person hours)	0E0			

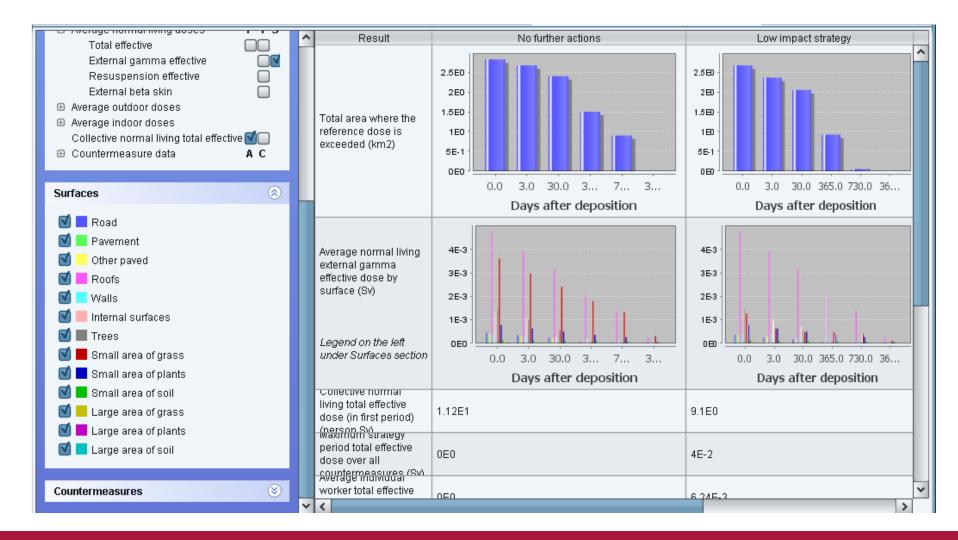
Area of Interest Environment Breakdowns Early Countermeasures Recovery Countermeasures Countermeasure Wizard


The consequences of proposed strategies can be evaluated and compared


Example: low impact strategy

Countermeasures for Countermeasure Zone: Zone2 (turf rem and high pres all paved)

	Add Delete	Table No furt	her actions <=	3.0 days <= 01	ther stra	ate <u>c</u>
Option		Surface	Start (day)	End (day)	PPE	Re
5:Turf harvesting-small scale		8:Mowable grass	10.0	20.0		
26:High pressure hosing paved		1:Paved road	10.0	20.0		
26:High pressure hosing paved		2:Paved pavement	10.0	20.0		
26:High pressure hosing paved		3:Paved other	10.0	20.0		



Contains OS data © Crown copyright and database right (2017)

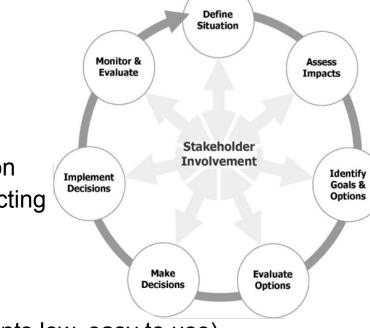
15 ERMIN inhabited recovery - European ALARA Network, Lisbon, May 2017

Summary/conclusions

Modelling tools do have a place, especially early on when data is sparse, but also throughout for projecting consequences of proposed strategies

Requirements:

Operational (run-times short, user input requirements low, easy to use)


Do not prescribe the decision-making process, but:

allows the user to frame the problem according to current needs (e.g. scale, available data, priorities etc)

recognise the iteration and feedbacks of decision making

allows the user to take what they need and apply it to the wider decision-making framework (information must be easily extracted)

produces information that is usable (appropriate to the current situation, understandable, complements other information)

