

RESULTS OF THE INTERCOMPARISON EXERCISE ISIS 2007

Strebl, F.; Feichtinger, J.; Schröttner, T.; Schwaiger, M.; Horrak, K.; Lovranich, E.; Kraus, M.

"In-Situ Gamma Spectrometry and Dose Rate Measurement in Emergency Situations"

Jointly organized by

Objectives of ISIS07

Emergency response

- Lab experts and national first responders
- Pressure of time & strict schedule
- In-Situ (in the field)
- Delivery of first results at the end of every day

Searching and Finding

• Dose rate measurements & mapping

Identification and quantification

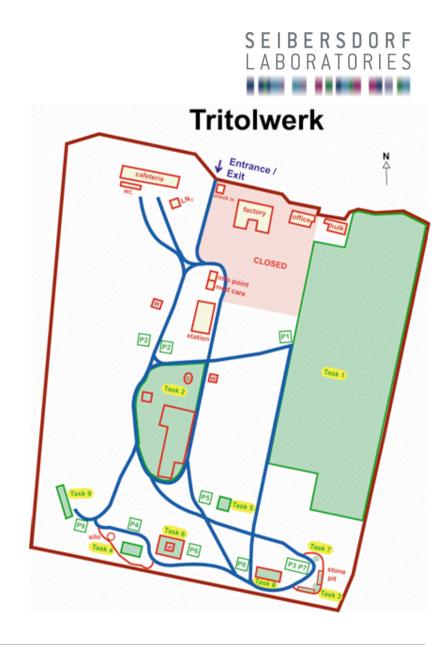
• High resolution gamma spectrometry

Participants of the ISIS07

Emergency response staff

- 56 international teams
- 182 active participants
- 10 observers
- 6 equipment manufacturer
- (125 first responders parallel exercises)
- 30 organizing staff

Exercise Design – 10 Tasks


The design of exercise tasks in the frame of "Emergency Preparedness"

- Mainly typical medical and industrial sources
- Accident scenario emergency responder
- Environmental monitoring classical in-situ
- More tricky tasks...

 \rightarrow Proof, that In-Situ is a "rapid response method"

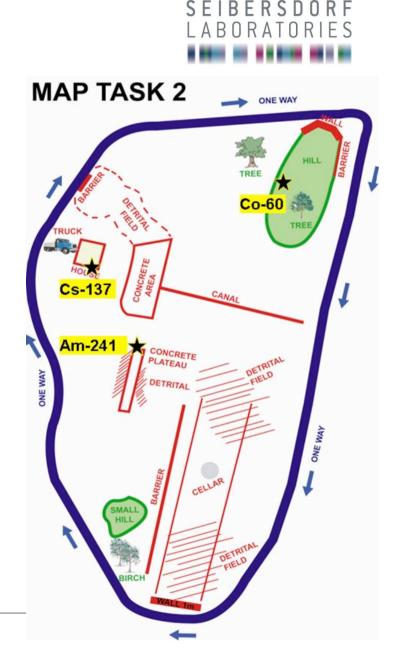
Exercise Site – Tritolwerk

The 10 Tasks of the ISIS07

- 1 Dose rate mapping
- 2 Drive by
- 3 Complex spectra
- 4, 7, 8 Contamination simulation (buried grid; buried single; cellar-source)
- 5, 6 Barrel measurement (shielded; unshielded – distance)
- 9 Buried Sources
- 10 Environmental measurement

Task 2 – Drive By

Setup


- 5,000 m² area, 3 hidden sources
- ⁶⁰Co at elevated position, 610 MBq
- ²⁴¹Am on top of concrete block, 401 MBq
- ¹³⁷Cs mounted in window frame of the bare brickwork, 6 MBq

Task

- Localisation of sources from outside
- Source position, nuclides, activities
- Duration: 1h 45min

Challenge:

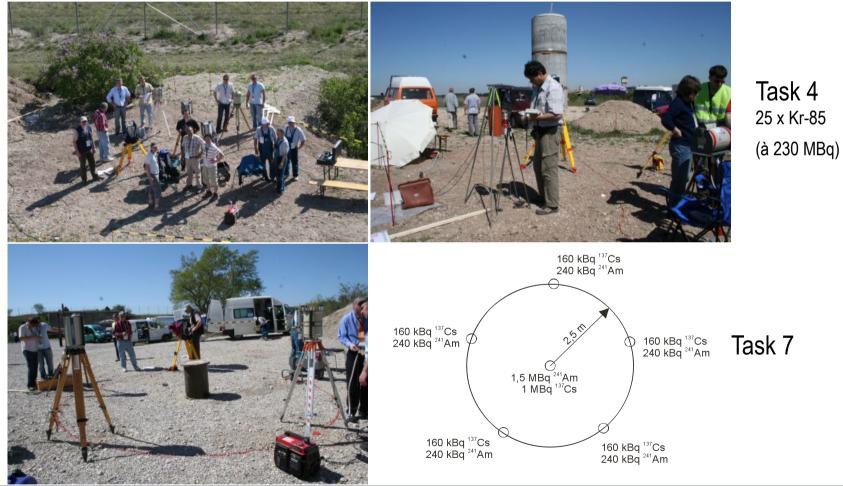
 Combination of sensitive dose rate & gamma measurement neccessary, possibly interference with ¹³⁷Cs Chernobyl)

Task 2 – Drive By

Results Task 2 – Drive By

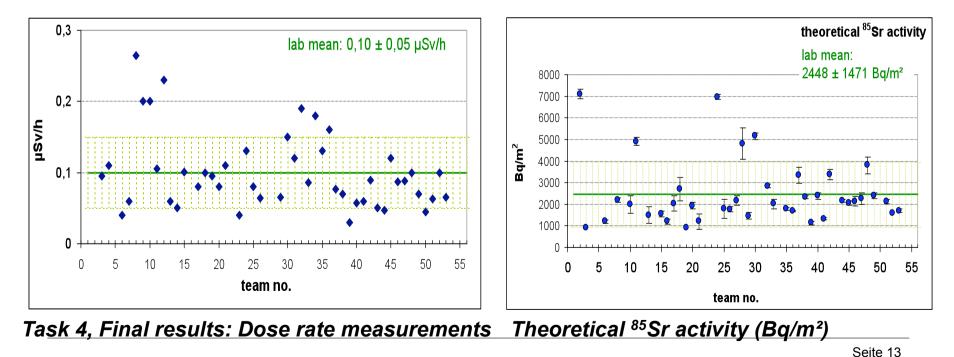
PRELIMINARY RESULTS		⁶⁰ Co	¹³⁷ Cs	²⁴¹ Am
source identified		42 (75%)	21 (38%)	7 (13%)
location determined	correct	11 (20%)	3 (5%)	2 (4%)
	nearby	12 (21%)	7 (13%)	0
	far away	5 (9%)	2 (4%)	3 (5%)
activity determined		22 (39%)	7 (13%)	2 (4%)

FINAL RESULTS		⁶⁰ Co	¹³⁷ Cs	²⁴¹ Am
source identified		50 (89%)	27 (48%)	8 (14%)
location determined	correct	20 (36%)	5 (9%)	3 (5%)
	nearby	18 (32%)	11 (20%)	1 (2%)
	far away	5 (9%)	4 (7%)	4 (7%)
activity determined		39 (70%)	16 (29%)	5 (9%)



Task 4, 7, 8 – Contamination Simulation

- Setup: Sources simulating area contamination (grid)
- Task: Identification and quantification
- Result: Nuclides and activities per m² surface
- Duration: 1h per task
- Challenge: Standard in-situ measurements


Task 4, 7, 8 – Contamination Simulation

Task 4, 7, 8 – Results Contaminat. Simulation

- Excellent results, ca. 30% ± no difficulties (timeframe)
- Very good calibrations and evaluation tools
- Good technical equipment

Conclusion

Time Pressure

- Stress due to complexity of tasks / terrain / timeframe
- Importance of exercising & preparations

Quality of data

- Standards for units & communications
- Uncertainties Definitions needed

General comment

- High technical standard, excellent evaluation tools
- Experienced team members important
- 4 person teams optimum

Events – Mobile Lab & Manufacturer Exhibition

Acknowledgements

Austrian Armed Forces

Brigadier N. Fürstenhofer, Captain B. Traxl, Captain P. Mohr (NBC-Defense School)

Brigadier Hercke, Major Häfele (Theresian Military Academy)

International Atomic Energy Agency, IAEA

Dr. Eliana Amaral, Rodolfo Cruz-Suarez (Div. Transport and Waste Safety) Dr. Gabriele Voigt, Umberto Sansone, Marek Makarewicz (Agency's Laboratories, Seibersdorf and Headquarters)

Team of the Radiation Safety & Applications Division (Seibersdorf Labor GmbH)

HIGHLY MOTIVATED PARTICIPANTS!!

